Mass problems and intuitionistic higher-order logic
نویسندگان
چکیده
In this paper we study a model of intuitionistic higher-order logic which we call the Muchnik topos. The Muchnik topos may be defined briefly as the category of sheaves of sets over the topological space consisting of the Turing degrees, where the Turing cones form a base for the topology. We note that our Muchnik topos interpretation of intuitionistic mathematics is an extension of the well known Kolmogorov/Muchnik interpretation of intuitionistic propositional calculus via Muchnik degrees, i.e., mass problems under weak reducibility. We introduce a new sheaf representation of the intuitionistic real numbers, the Muchnik reals, which are different from the Cauchy reals and the Dedekind reals. Within the Muchnik topos we obtain a choice principle (∀x∃y A(x, y)) ⇒ ∃w ∀xA(x,wx) and a bounding principle (∀x∃y A(x, y)) ⇒ ∃z ∀x∃y (y ≤T (x, z) ∧ A(x, y)) where x, y, z range over Muchnik reals, w ranges over functions from Muchnik reals to Muchnik reals, and A(x, y) is a formula not containing w or z. For the convenience of the reader, we explain all of the essential background material on intuitionism, sheaf theory, intuitionistic higher-order logic, Turing degrees, mass problems, Muchnik degrees, and Kolmogorov’s calculus of problems. We also provide an English translation of Muchnik’s 1963 paper on Muchnik degrees. Simpson’s research was partially supported by the Eberly College of Science at the Pennsylvania State University, and by Simons Foundation Collaboration Grant 276282.
منابع مشابه
First-Order Logic in the Medvedev Lattice
Kolmogorov introduced an informal calculus of problems in an attempt to provide a classical semantics for intuitionistic logic. This was later formalised by Medvedev and Muchnik as what has come to be called the Medvedev and Muchnik lattices. However, they only formalised this for propositional logic, while Kolmogorov also discussed the universal quantifier. We extend the work of Medvedev to fi...
متن کاملIntuitionistic fuzzy logic for adaptive energy efficient routing in mobile ad-hoc networks
In recent years, mobile ad-hoc networks have been used widely due to advances in wireless technology. These networks are formed in any environment that is needed without a fixed infrastructure or centralized management. Mobile ad-hoc networks have some characteristics and advantages such as wireless medium access, multi-hop routing, low cost development, dynamic topology and etc. In these netwo...
متن کاملSpecifying Functional Programs with Intuitionistic First Order Logic
We propose a method of specifying functional programs (in a subset of Haskell) using intuitionistic first order logic, that works well for inductive datatypes, higher-order functions and parametric polymorphism.
متن کاملAN ALGEBRAIC STRUCTURE FOR INTUITIONISTIC FUZZY LOGIC
In this paper we extend the notion of degrees of membership and non-membership of intuitionistic fuzzy sets to lattices and introduce a residuated lattice with appropriate operations to serve as semantics of intuitionistic fuzzy logic. It would be a step forward to find an algebraic counterpart for intuitionistic fuzzy logic. We give the main properties of the operations defined and prove som...
متن کاملThe ILTP Library: Benchmarking Automated Theorem Provers for Intuitionistic Logic
The Intuitionistic Logic Theorem Proving (ILTP) Library provides a platfom for testing and benchmarking theorem provers for first-order intuitionistic logic. It includes a collection of benchmark problems in a standardised syntax and performance results obtained by a comprehensive test of currently available intuitionistic theorem proving systems. These results are used to provide information a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computability
دوره 5 شماره
صفحات -
تاریخ انتشار 2016